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Nonlinear stability of parallel flows with subcritical 
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A theoretical study is presented of the spatial stability of flow in a circular pipe to 
small but finite axisymmetric disturbances. The disturbance is represented by a 
Fourier series with respect to time, and the truncated system of equations for the 
components up to the second-harmonic wave is derived under a rational assumption 
concerning the magnitudes of the Fourier components. The solution provides a relation 
between the damping rate and the amplitude of disturbance. Numerical calculations 
are carried out for Reynolds numbers R between 500 and 4000 and BR < 5000, B 
being the non-dimensional frequency. The results indicate that the flow is stable ta 
finite disturbances as well as to infinitesimal disturbances for all values of R and #IR 
concerned. 

1. Introduction 
The stability problem for Poiseuille flow in a circular pipe has been of continuing 

interest since the classic experiments of Osborne Reynolds (1883), who concluded that 
the flow would be unstable if the Reynolds number exceeded a certain critical value. 
Subsequent experiments have shown that the critical Reynolds number varies from 
about 2000 to 50000 or even more according as the flow at the entrance is disturbed 
or maintained smooth. 

A number of theoretical investigations have been made to determine the critical 
Reynolds number for this flow. The theory of stability to infinitesimal disturbances, 
the linear stability theory, was begun with Sex1 (1927) and studied definitively by 
Gill (1965) and Davey & Drazin (1969) for axisymmetric modes of disturbance. 
Contributions to the harder problem of non-axisymmetric modes have been made by 
Lessen, Sadler & Liu (1968), Salwen & Grosch (1972) and Garg & Rouleau (1972). 
All these studies have led to the conclusion that fully developed Poiseuille flow in a 
pipe is stable to both axisymmetric and non-axisymmetric infinitesimal disturbances 
at any Reynolds number. On the basis of the concept that a small disturbance could 
grow near the pipe entrance, where the fully developed parabolic profile has not yet 
been attained, Tatsumi (1952) studied the stability of the boundary layer in the 
entrance region to axisymmetric disturbances and found a critical Reynolds number 
of nearly 10000. This result suggests that the disturbance amplified in the entrance 
region might reach the fully developed region with an amplitude much larger than the 
one assumed in the linear stability theory. 

It is therefore of great interest to investigate the stability of the fully developed 
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flow to finite amplitude disturbances. Unlike plane Poiseuille flow and Blasius flow, 
pipe Poiseuille flow has no critical Reynolds number for infinitesimal disturbances as 
stated above. This fact constituted a great obstacle to the application to the present 
problem of nonlinear stability theory, as developed by Stuart (1960) and Watson 
(1960, 1962). For such cases, the method of the false problem was first suggested by 
Reynolds & Potter (1967, $ 4). They allowed the frequency of the fundamental wave 
to be complex in 0 4 of their paper, although they had defined it as a real quantity in 
the preceding sections. Davey & Nguyen (1971) applied this method to the problem 
of pipe Poiseuille flow and concluded that the flow became unstable to axisymmetric 
disturbances if the disturbance amplitude exceeded a certain critical value, the so- 
called equilibrium amplitude; they calculated the equilibrium amplitude for a range 
of wavenumbers and Reynolds numbers. Their nonlinear study deals with disturbances 
which grow or decay with time (temporally dependent disturbances). However, it is 
preferable for comparison with experimental results to consider disturbances which 
grow or decay with downstream distance (spatially dependent disturbances). 

In  the work reported here the stability of pipe PoiseuiHe ffow to spatially dependent 
axisymmetric disturbances with small but finite amplitude is investigated with the 
aid of the asymptotic theory valid for subcritical flows presented in part 1 (Itoh 
1977a)) together with the method of analysis for the spatial development of finite 
amplitude disturbances given in the author's previous papers (Itoh 19743, c), in which 
the method of Watson (1962) was modified to examine the two-dimensional cases of 
plane Poiseuille flow and of the boundary-layer flow on a flat plate. The numerical 
method developed by the author (Itoh 1974a) is used for integrating ordinary dif- 
ferential equations of fourth order. It is shown in $ 3  that the present method leads 
to a result opposite to that obtained by Davey & Nguyen on the basis of the formula- 
tion of Reynolds & Potter; that is, there is no equilibrium amplitude in the case of 
pipe Poiseuille flow. A lucid explanation for these contradictory results is given in $ 4. 

2. Linear theory 
Only axisymmetric motion of an incompressible fluid in a circular pipe is considered. 

The velocity profile of the basic flow is parabolic with maximum velocity U, on the 
centre-line. All quantities' are made non-dimensional with the pipe radius a, the 
velocity U, and the reference time a/U,. The Reynolds number of the flow is R = U, alv, 
where v is the kinematic viscosity. Let ( x , r )  be co-ordinates in the axial and radial 
directions, respectively, and (u, v) the corresponding velocity components. Since the 
quantities are independent of the azimuthal angle, the velocity field can be expressed 
in terms of a stream function Y as 

In  order to investigate the behaviour of a small disturbance superimposed on the 
basic flow, the stream function is divided into two terms as 

where Y o ( r )  = +r2 - 4r4 represents the basic flow and $(r, x, t )  the axisymmetric 
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FIGURE 1. The variation of the least stable eigenvalue with the non-dimensional 
frequency. 0, the first three eigenvalues for = 0 and R 3 500. 

disturbance. Substitution of (2.2) into the Navier-Stokes equation leads to the 
equation for the function $(r, x, t): 

The boundary conditions to be imposed are that the disturbance velocity should be 
axisymmetric, bounded on the centre-line and vanish a t  the wall. These are 

In the linear stability theory disturbances are assumed to be infinitesimal and the 
coupling terms on the right-hand side of (2.3) are neglected. The resultant linear 
equation admits a solution of the form 

$P, x, t )  = A,  91(r) exp (i(a, x-Bt)>, (2.5) 

where 01, is a complex wavenumber, ,8 a real frequency, A ,  an arbitrary constant and 
the function #,(r) is made definite by imposing the normalization condition 

9;co, = 1,  (2-6) 

the primes denoting differentiation with respect to r.  Then the equation 

with the boundary conditions (2.4), provides an eigenvalue problem determining an 
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infinite sequence of eigenvalues a:") (n = 0,1 ,2 ,  ...) as functions of ,8 and R. The 
imaginary part of each eigenvalue represents the damping rate of the corresponding 
mode. 

This eigenvalue problem has been solved by Gill (1965), Davey & Drazin (1969) 
and Garg & Rouleau (1972). From these studies, it is found that the imaginary parts 
of all the eigenvalues are always positive, indicating that all infinitesimal disturbances 
decay with downstream distance in pipe Poiseuille flow. Since results are given in 
those papers only for high Reynolds numbers, the least stable eigenvalue ai0) has been 
recalculated for a wide range R 2 500 and PR < 5000 and is shown in figure 1, where 
the curves of the real part a;:) R are indistinguishable for R 2 500. The first three 
purely imaginary eigenvalues for P = 0 and R 2 500 (ap) = i ~ ,  for n = 0,1 ,2) ,  which 
are eigenvalues of the mean-flow distortion, are also given in figure 1. The results are 
in good agreement with those of Davey & Drazin (1969) and others. 

3. Nonlinear theory 

$ in a Fourier series with respect to time: 
In  order to solve the nonlinear disturbance equation (2.3), we expand the function 

$(r, x, t )  = $o(r, x) + llrl(r, x) e-igt + g1(r ,  x) eigt 

+ $2(r, x) e-2iSt+$2(r, x) higher-order terms, (3.1) 

where a tilde denotes a complex conjugate. Substituting (3.1) into (2.3) and equating 
the Fourier components, we obtain an infinite set of equations. Following Stuart 
(1960) and Watson (1960, 1962), we assume that the amplitude lAll of the funda- 
mental wave is sufficiently small, and that $fo = O(JA1l2) and $, = O(IAIJn) for 
n 2 1. Then the higher-order terms in (3.1) can be neglected, and the equations for 
the fundamental disturbance $1, the mean-flow distortion $o and the second-harmonic 
disturbance $2 are obtained in the form 

( 3 . 2 ~ )  

(3.2 b, c) 
L,[$ll = " $ 0 ,  $11 + "$2, $11, 

LO[$Ol = "$1, $ 1 1 7  L2[$21 = BW$l, $119 
where the operators L, (k = 0 ,1 ,2 )  and M are defined by 

The solution of this set of equations is considered to describe the behaviour of finite 
disturbances to a fairly good approximation when their amplitudes are not very large. 

In  order to solve (3.2), we consider a fundamental disturbance of the form 

with 
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where the constant A, denotes a complex amplitude defined a t  the origin x = 0, 
which may be arbitrarily chosen along the x axis, and ajo) and $lo) are the least stable 
eigenvalue and the corresponding eigenfunction of the linear problem. Substituting 
the first approximation to the fundamental $l(r,  x) = A ,  $lo)(.) exp (ialo) x) into the 
nonlinear terms of (3 .2b,  c ) ,  we solve the resultant inhomogeneous equations for the 
mean-flow distortion and second-harmonic disturbance. Then the solutions together 
with the first approximation to the fundamental are substituted into the right-hand 
side of ( 3 . 2 ~ )  to obtain the correction terms f ( r )  and h in (3.4). 

The equations for the mean-flow distortion and second-harmonic disturbance have 
forcing terms of the form 

(3 .5 )  I W$~,$,I = 1A112no(T)exp(-2al:'x) +o()A, )~) ,  
+M[$-,, $,I = -4?n2(r) exp (2ialo)x) +0(lAl14), 

respectively, where 

A formal solution of these equations can be obtained by following the formulation 
of Watson (1962), who put 

$o = IAl)2Go(r)exp(-2a1~)x)+O(IAl)4), (3.7) 

$2 = A; G2(r)  exp (2ialo) x) + O( IAJ4). (3 .8)  

On the other hand, Davey & Nguyen (1971), following the method of Reynolds & 
Potter (1967, $4) ,  ignored the term exp ( - 2al:)x) in the forcing term of the mean-flow 
equation and put the solution in the equilibrium form $o = /Al  I go(r), although they 
used the non-equilibrium form (3 .8)  for the solution of the second-harmonic equation. 
However, both these methods appear to be inadequate in the case of pipe Poiseuille 
flow, because the damping rate a$) obtained from linear theory is not of smaller order 
than the damping rates of the eigensolutions of the mean-flow and second-harmonic 
equations. This fact is shown in figure 1 ;  for instance, when R = 1000 and p = 2.0, 
we have aj;) = 0.14, while the damping rates of the mean-flow distortion, for which 
/3 = 0,  and of the second harmonic, for which /3 = 4.0, are 0.03 and 0.21, respectively, 
both of which are less than 2al:). Therefore the eigensolution components cannot be 
ignored in solutions of the second-harmonic equation or the mean-flow equation. 
Further discussions of this point are given in $ 4. 

In order to take into account the eigensolution components mentioned above, we 
follow the approach presented in part 1 (Itoh 1 9 7 7 ~ ) .  The main point of that approach 
is to display the behaviour of the disturbance amplitude in an inhite-dimensional 
phase space introduced by the method of eigenfunction expansion, which is considered 
to be applicable to the present problem of spatially dependent disturbances. The 
phase-space consideration indicates that the quantity A, which, together with the 
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linear damping rate a$$), determines the pattern of development of weakly nonlinear 
disturbances, should be calculated by using mean-flow and second-harmonic com- 
ponents of the equilibrium form 

(3.9) 

(3.10) 

respectively, where the functions gO(r) and g2(r) are the solutions of the equations 

(3.11) 

under the boundary conditions 

limr-lgk(r) = 0, limr-lg;(r) < co, gk(l) = g;(l) = 0 (k = 0,2). (3.13) 
r+O -0 

Substituting (3.9) and (3.10) together with the first approximation to $l into the 
right-handside of (3.2a), and (3.4) into the left-handside, then equating the coefficients 
of A,IA,I2 on both sides, we obtain the equation determining the correction terms 
f ( r )  and h in (3.4) as 

J510[f(r)l = - ~L11[$i0)WI + H O P )  + U r ) ,  (3.14) 

where the operators L,, and L,, and the functions H,(r) and H2(r) are defined by 

(3.16) 

Since the above equation has the same operator on the left-hand side as the linear 
equation (2.7), a solution exists only when the right-hand side satisfies a solvability 
condition. If we introduce the adjoint eigenfunction @(r)  associated with the linear 
equation (2.7), the solvability condition is written in the form 

(3.16) 
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PR 
FIGURE 2. The variation of A, R and hi R with PR. 

which determines the value of A. The function f ( r )  is determined uniquely by imposing 
the boundary conditions 

lim r-If(r)  = 0, lim r-If’(r)  < a, f( 1) = f‘( 1) = 0 (3.17) 

and an additional condition f”(0) = 0, (3.18) 

which originates from the fact that @JAl should satisfy the normalization condition 
(2 .6 ) .  Equation (3 .16)  indicates that the coefficient A can be divided into two parts as 

-0 -0 

SD’ @ ( r )  Ho(r) dr 

IOi W) M4i0) (r )1  0% 

so’ W) Hz(r) dr 

1,’ W) ~11[4!0)(r)1 0% 

A =A,+A,, A,= 9 A2 = . (3.19) 

If the higher-order terms of (3 .1)  are taken into account, more terms of order 
IA112n (n  2 2 )  on the right-hand sides of (3 .4b , c )  are determined in a similar way. 
The damping rate of finite amplitude disturbances is generally written in the form 

uli = &) +hi IA1l2 + O( IA114). (3 .20)  

The values ]All = /Alle for which ali = 0 are called the equilibrium amplitudes. If 
an equilibrium amplitude exists in the range of small amplitudes for which the term 
of order IA112 in (3 .20)  will be the dominant nonlinear term, then the equilibrium 
amplitude is approximately given by 

IA1l2 = - ai:’/Ai. (3.21) 

The results of the linear theory have shown that the damping rate a$$) of infinitesimal 
disturbances is positive for the whole range of frequencies and Reynolds numbers. 
Therefore the small equilibrium amplitude exists only when hi is negative. 

Numerical calculations have been carried out in order to determine the values of 
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h for R = 500, 1000, 2000 and 4000 and $R < 5000. The results are shown in figure 
2, where the real and imaginary part.5 of hR are plotted against $R for each value of the 
Reynolds number. It is seen that hi is always positive, indicating that no equilibrium 
state exists for small amplitudes. A small but finite disturbance thus turns out to 
dewy faster than the corresponding infinitesimal disturbance. We note from (3.19) 
that the coefficient hi is made up of two terms representing the effect of the mean-flow 
distortion (Aoi )  and the effect of the second-harmonic disturbance (h,J respectively. 
The variations of hoi R and hgi R with i3R are presented in figure 3. The effect of the 
second-harmonic disturbance is always to make the flow stable and is much larger 
than the effect of the mean-flow distortion, which makes the flow unstable in some 
range of $R. 

4. Discussion 
The present analysis leads to the result that no equilibrium state can exist for 

spatially dependent disturbances, while Davey & Nguyen (1971) have found the 
equilibrium amplitude of temporally dependent disturbances for a range of wave- 
numbers and Reynolds numbers. It is very impoitant to inquire into the reason for 
the contradiction between these two studies. 

In  the paper of Davey & Nguyen, disturbances are temporally growing or decaying 
waves, so that ccl is real and $ is complex, the imaginary part Pi representing the 
amplification rate. The linear problem determines eigenvalues $Cn) (n = 0 ,1 ,2 ,  . . .) as 
functions of ccl and R, $(O) corresponding to the least stable one. Davey & Nguyen 
assumed an equilibrium state when they derived the equation for the mean-flow 
distortion. The equation was written in the form similar to (3.11), although the boun- 
dary conditions were slightly different from (3.12) because the pressure gradient was 
supposed to be maintained at a constant value in their formulation. On the other 
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hand, however, the equation for the second-harmonic disturbance was considered 
without making the assumption of an equilibrium state. As a matter of fact, the 
complex eigenvalue p ( 0 )  (instead of /3Lo)) was used as the parameter p appearing in the 
equation corresponding to (3.12). This formulation brings about the existence of an 
equilibrium amplitude; for example, when a1 = 6.2 and R = 500, numerical cal- 
culations by the present author show that 

p ( 0 )  = 5.88504 - 0*391840i, h = - 3.7023 + 35'878i 

and thus the equilibrium amplitude is given by lAll = (-@)/Ad)+ = 0.10451. These 
values coincide with those given by Davey & Nguyen (1971, p. 710) except for the 
difference in the notation. 

If the present approach were applied to the temporal problem with the same 
wavenumber and Reynolds number, we should obtain a negative value of -p i0) /Af  
with h = 65.500 - 20.266i, indicating the absence of an equilibrium amplitude, 
which is in agreement with the result for the spatial problem given in 0 3. It is seen 
therefore that the only difference between the present approach and that of Davey 
& Nguyen is in the treatment of the amplification rate of the second-harmonic 
disturbance. If the complex eigenvalue 24") had been used in (3.12) instead of 2cc$?, 
the sign of hi would have been opposite to that obtained in 3 3. In  order to confirm 
this conjecture, let us write a2 instead of 2a$? for the generalized expression for the 
complex wavenumber of the second-harmonic disturbance. Then (3.12) may be 
written in the form 

It is easily found that the reversal in the sign of hi, as mentioned above, arises from the 
singularity of this equation at a2 = a!jo), a!jo) being the least stable eigenvalue of the 
corresponding homogeneous equation. The eigenfunction expansion of the particular 
solution of (4.1) reveals that the solution g2(r) becomes infinite when the parameter 
a2 coincides with one of the eigenvalues. In  particular for the value of a2 in the vicinity 
of the least stable eigenvalue aho), the solution of (4.1) can be written in the form 

where (T is a constant and gg(r)  a normalized function. The signs of the real and 
imaginary parts of g2(r) are reversed according as a2 = 2a;:) or a2 = 2crio), because of 
the fact that a!$ + 2011;) as shown in figure 1. This property of the second-harmonic 
solution furnishes the major reason for the contradiction between the present results 
and those of Davey & Nguyen. 

It is obvious from the phase-space consideration given in part 1 that the judgement 
as to whether weak nonlinearity contributes to growth or decay of disturbances should 
be made with the Landau constant determined by the use of the equilibrium solutions 
for the mean-flow distortion and the second-harmonic disturbance. That is, the 
parameter a2 in (4.1) should be taken to be 24;). The Landau constant A, obtained in 
this way is negative as shown in figure 2, so that nonlinearity, at  least when it is weak, 
accelerates the damping of disturbances in the case of pipe Poiseuille flow. 

Here a remark should be made about the formulation of the false-problem method 
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FIGURE 4. Schematic sketch of the relation between 
wi  and IA 12 in the false problem. 

of Reynolds & Potter (1967, 0 4), on which the analysis of Davey & Nguyen is based. 
In the false problem the complex frequency w is expanded in powers of the disturbance 
amplitude [A1 and the solutions of the true problem are extracted by selecting the 
values of IAl which make w real. This method requires first the convergence of the 

series 00 

(4.3) 

in a range of small amplitudes. Next, it is necessary that there is at  least one root 
of the equation mi( IA 12)  = 0 inside the domain of convergence. This means that the 
curve wi = wi( IA 12) in the IA 12, wi plane must intersect the IA 12 axis at a point in a 
range of small IA12. In the case of pipe Poiseuille flow, however, the comparison 
between the two numerical results given in the second and third paragraphs of this 
section suggests that a singularity similar to the one in (4.2) exists also in the temporal 
problem; that is, there is a singular point = +wit) between wi = mio) and wi = 0 as 
shown in figure 4, where wLo) and w!$ are the amplification rates of the eigensolutions 
of the fundamental and second-harmonic equations, respectively. This fact indicates 
that the solution curve wi = wi( IA 12) of the false problem has no intersection with the 
IA12 axis for any small value of 1.412, although the approximation by the first two 
terms wi == + &)(A 12 is supposed to give an equilibrium point. Thus we are led to 
the conclusion that the false-problem method of Reynolds & Potter cannot be applied 
to pipe Poiseuille flow. 

5. Conclusion 
The stability of pipe Poiseuille flow to axisymmetric disturbances has been examined 

by application of the asymptotic theory which is developed in part 1, which is 
guaranteed to be valid for subcritical flows. Numerical results for R up to 4000 and 
PR up to 5000 indicate that this flow is spatially stable to small but finite disturbances 
as well as to infinitesimal disturbances, provided that the disturbance is sufficiently 
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small and the nth component in the Fourier expansion may be assumed to be of order 
&--ll+l, B being the magnitude of the fundamental. The mean-flow distortion has a 
tendency to make the flow unstable for some range of R and PR, but the effect is 
small compared with the stabilizing effect of the second-harmonic disturbance, 
resulting in stability of the flow for the whole range of Reynolds numbers and wave- 
numbers concerned. 

The above conclusion apparently contradicts the result of Davey & Nguyen (1971) 
that the flow can be unstable if the disturbance amplitude exceeds a certain value. 
It is pointed out, however, that the false-problem method of Reynolds & Potter 
(1967, 9 4), on which the formulation of Davey & Nguyen is based, is not applicable 
to the problem of pipe Poiseuille flow. 

The present analysis is unsuccessful in explaining the experimentally observed 
instability of pipe flow. Seeing that the disturbance considered is limited to the least 
stable mode of axisymmetric disturbance, the cause of instability is most likely to be 
found in other modes of disturbance, such as the first azimuthal mode, which is now 
believed to be the least stable mode among all axisymmetric and non-axisymmetric 
disturbances (Garg & Rouleau 1972). Also, there seems to be the possibility of 
instability due to nonlinear interactions between different modes, in view of the 
strong instability arising from the interaction between two-dimensional and three- 
dimensional disturbances in plane Poiseuille flow (Itoh 1977 b ) .  

The author is greatly indebted to Professor Itiro Tani for his valuable advice and 
constant encouragement. He also wishes to thank Professor J. T. Stuart for many 
helpful discussions during the author’s visit to the Imperial College of Science and 
Technology, London. 
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